Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting
نویسندگان
چکیده
Optical angiography systems based on optical coherence tomography (OCT) require dense sampling in order to maintain good vascular contrast. We demonstrate a way to gain acquisition speed and spatial sampling by using spectral splitting with a swept source OCT system. This method splits the recorded spectra into two to several subspectra. Using continuous lateral scanning, the lateral sampling is then increased by the same factor. This allows increasing the field of view of OCT angiography, while keeping the same transverse resolution and measurement time. The performance of our method is demonstrated in vivo at different locations of the human retina and verified quantitatively. Spectral splitting can be applied without any changes in the optical setup, thus offering an easy way to increase the field of view of OCT in general and in particular for OCT angiography. OPEN ACCESS Photonics 2014, 1 370
منابع مشابه
Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications
Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm(2)), which somehow slows down its clinical acceptance. In this paper, we report a high-...
متن کاملRetinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers
We demonstrate swept source OCT utilizing vertical-cavity surface emitting laser (VCSEL) technology for in vivo high speed retinal, anterior segment and full eye imaging. The MEMS tunable VCSEL enables long coherence length, adjustable spectral sweep range and adjustable high sweeping rate (50-580 kHz axial scan rate). These features enable integration of multiple ophthalmic applications into o...
متن کاملChoriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography
We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure with...
متن کاملUltrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second.
We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000 - 400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100 kHz axial scan rate with 5.3 um axi...
متن کاملOptical coherence tomographic angiography of choroidal neovascularization associated with central serous chorioretinopathy.
Optical Coherence Tomographic Angiography of Choroidal Neovascularization Associated With Central Serous Chorioretinopathy Choroidal neovascularization (CNV) can complicate chronic central serous chorioretinopathy (CSC) and may be difficult to diagnose because CSC itself can be associated with pigment epithelial detachment, subretinal fluid, and ill-defined patterns of hyperfluorescence on fluo...
متن کامل